742. Thermodynamics of Ion Association. Part IV. ${ }^{1}$ Magnesium and Zinc Sulphates.

By V. S. K. Nair and G. H. Nancollas.

Thermodynamic equilibrium constants for the association in aqueous solution of magnesium and zinc ions with the sulphate ion have been determined by a precise e.m.f. method at various temperatures between 0° and 45°. $\Delta G, \Delta H$, and ΔS for the reaction $\mathrm{M}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{MSO}_{4}$ have been calculated and these are discussed.

In a previous paper ${ }^{1}$ the thermodynamic properties for the association between the thallous ion and univalent anions have been determined from solubilities and conductivities. We have now investigated the association between similarly charged ions of higher valency type. Since the bisulphate ion is incompletely dissociated and its dissociation constant is known with considerable certainty over a range of temperature, ${ }^{2}$ the bivalent metal sulphates can be studied by using the cell $\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{MSO}_{4}, \mathrm{HCl}\right| \mathrm{AgCl}-\mathrm{Ag}$. Jones and Monk ${ }^{3}$ with a similar cell studied magnesium sulphate and obtained e.m.f.s to within $100 \mu \mathrm{v}$ at temperatures from 20° to 35°. In order to obtain reliable estimates of the association constants, however, very precise measurements are required since an error of $\pm 100 \mu \mathrm{~V}$ in the e.m.f.'s would produce a variation of $10-20 \%$ in the association constants. ${ }^{3}$ Measurements have been made on similar cells with the refined apparatus described in part V. ${ }^{2}$

Experimental

" AnalaR" magnesium and zinc sulphates were recrystallised three times from conductivity water and dried at 110°. Small samples in weighing tubes having ground glass caps were rendered anhydrous by heating to constant weight in a muffle furnace at 350° to 420°, then dropped into hydrochloric acid solutions of known molality; the solutions were made up by
${ }_{2}^{1}$ Part III, Nair and Nancollas, $J ., 1957,318$.
${ }^{2}$ Nair and Nancollas, J., in the press.
${ }^{3}$ Jones and Monk, Trans. Faraday Soc., 1952, 48, 929.
weight with conductivity water. The stock solutions were analysed for sulphate by precipitation as barium sulphate ${ }^{4}$ and agreement was within 0.03% of the calculated concentrations. The preparation of hydrochloric acid, standardisation of electrodes, and experimental technique will be described later. ${ }^{2}$ Experiments were usually made from 0° to 25° and a new cell filling was used for measurements from 25° to 45°. The e.m.f.s obtained at the same temperature with different fillings never varied by more than $30 \mu \mathrm{v}$.

Results and Discussion

The e.m.f. of the cell $\mathrm{H}_{2}, \mathrm{Pt}\left|\mathrm{HCl}\left(m_{1}\right), \mathrm{MSO}_{4}\left(m_{2}\right)\right| \mathrm{AgCl}-\mathrm{Ag}$ is given by
or

$$
\begin{gathered}
E=E^{\circ}-k \log a_{\mathrm{H}^{+}} a_{\mathrm{Cl}^{-}} \\
-\log m_{\mathrm{H}^{-}}=\left(E-E^{\circ}\right) / k+\log m_{1}+\log \gamma_{\mathrm{H}^{+}} \gamma_{\mathrm{Cl}^{-}}
\end{gathered}
$$

where m represents molality, γ activity coefficient, and $k=2.3026 \boldsymbol{R T} / \boldsymbol{F}$. Assuming that the only association taking place is that between the bivalent ions, we find the concentrations of ion species $m_{\mathrm{HSO}_{4}-}=m_{1}-m_{\mathrm{H}^{+}}, m_{\mathrm{M}^{+}}=m_{\mathrm{HSO}_{4}^{-}}+m_{\mathrm{SO}_{4}^{--}}$, and $m_{\mathrm{MSO}_{4}}=$ $m_{2}-m_{\mathrm{M}^{2+}}$. The ionic strength, $I=m_{1}+4 m_{2}-2 m_{\mathrm{HSO}}^{4}-4 m_{\mathrm{MSO}_{4}}$, and the dissociation constant of the bisulphate ion, $k_{2}=a_{\mathrm{H}}+a_{\mathrm{SO}_{4}-} / a_{\mathrm{HSO}}^{4}-$, , has the values obtained previously. ${ }^{1}$ The association constant, $K=a_{\mathrm{MSO}} / a_{\mathrm{M}^{2}+} a_{\mathrm{SO}_{4}^{2}}{ }^{-}$, was obtained by successive approximations of I by use of Davies's modified form of the Debye-Hückel equation ${ }^{5}$

$$
\begin{equation*}
\log \gamma_{z}=A z^{2}\left[I^{\frac{1}{2}} /\left(1+I^{\frac{1}{2}}\right)-C I\right] \tag{1}
\end{equation*}
$$

in which $C=0 \cdot 2$. The results are given in Table 1 together with the mean values of K at each temperature.

Dunsmore and James ${ }^{6}$ obtained a value $K=161 \mathrm{~kg}$. mole ${ }^{-1}$ for magnesium sulphate at 25° from conductivity measurements. Jones and Monk ${ }^{3}$ have recalculated these data allowing for a drift in K with concentration and give $K=185 \mathrm{~kg}$. mole ${ }^{-1}$. Robinson and Stokes ${ }^{7}$ have re-analysed Dunsmore and James's results using the Bjerrum critical distance for a $2: 2$ electrolyte, $a_{\mathrm{i}}=14.28 \AA$, in the activity-coefficient expression and obtained $K=201.6 \mathrm{~kg}$. mole ${ }^{-1}$. Jones and Monk ${ }^{3}$ have reported a value of 227 kg . mole ${ }^{-1}$ from e.m.f. measurements: the new value being used for $k_{2},{ }^{2}$ this is reduced to $212 \mathrm{~kg} . \mathrm{mole}^{-1}$. Our value at $25^{\circ}, 179$, is in general agreement with these. At 18°, the interpolated value 155.5 kg . mole ${ }^{-1}$ agrees with that of Davies, ${ }^{8} 164 \mathrm{~kg}$. mole ${ }^{-1}$, from conductivity measurements. The conductivity of zinc sulphate solutions has been measured by Owen and Gurry ${ }^{9}$ who derived $K=204 \mathrm{~kg}$. mole ${ }^{-1}$ at 25°. Robinson and Stokes ${ }^{7}$ have recalculated these data by the method outlined for magnesium sulphate and obtained $K=227 \mathrm{~kg}$. mole ${ }^{-1}$. At 0° the cryoscopic measurements of Brown and Prue ${ }^{10}$ give $K=111 \mathrm{~kg}$. mole ${ }^{-1}$ for both magnesium sulphate and zinc sulphate which may be compared with the present values of 92 and 121 kg . mole ${ }^{-1}$ respectively.

The heats of formation, ΔH, have been obtained from the linear plots shown in the Figure of $\log K$ against T^{-1} with use of least squares (Table 2).

Davies's expression for activity coefficients with $C=0.2$ in eqn. (1) corresponds to a distance of closest approach of the ions, q, of about $4 \cdot 3 \AA$. There is a considerable latitude in the choice of values for this parameter and the subject has received much attention. ${ }^{10,11,12}$ Beevers and Lipson's ${ }^{13} X$-ray data for copper sulphate were used by

[^0]Brown and Prue ${ }^{10}$ to show that, at least for this salt, a q value of about $4 \AA$ was reasonable. Guggenheim ${ }^{11}$ favoured larger values of q of the order of $10 \AA$ and suggested that for 2:2 electrolytes a value of $C=2.0$ corresponding to $q \sim 9 \AA$ would be more appropriate. The position in the mixed electrolytes of the present work is complicated since the significance of the q value is uncertain. When recalculations are made with $C=2.0$ in the expression for the activity coefficients of bivalent ions, K for magnesium sulphate at 25° varies by $20-30 \%$ in the range of ionic strengths studied. As can be seen in Table 1,

	Table 1. E.m.f. measurements. Magnesium sulphate						
No.	$10^{3} m_{1}$	$10^{3} m_{2}$	No.	$10^{3} m_{1} \quad 10^{3} m_{2}$	No.	$10^{3} m_{1}$	$10^{3} m_{2}$
1	$5 \cdot 522$	$3 \cdot 619$	4	6.170 5.333	7	3.929	34-786
2	$7 \cdot 127$	5.222	5	$4 \cdot 392 \quad 38.497$	8	$6 \cdot 108$	21.853
3	7.575	$5 \cdot 148$	6	$\mathbf{3 . 6 5 2}$ 16.727	9	$4 \cdot 914$	19.341
No.	$\left(E-E^{\circ}\right)$	$10^{3} I$	$10^{3} m_{\text {HSO4 }}{ }^{-}$	$-10^{3} m_{M^{2+}}$	$10^{3} m_{\text {MSO }}$ ،	K	K (mean)
Temp. 0°							
1	$0 \cdot 25226$	17.59	$0 \cdot 347$	$3 \cdot 274$	$0 \cdot 345$	100	
2	$0 \cdot 24158$	24.56	$0 \cdot 567$	$4 \cdot 641$	0.581	$94 \cdot 4$	
3	$0 \cdot 23867$	$24 \cdot 66$	$0 \cdot 590$	$4 \cdot 575$	$0 \cdot 573$	102	
4	$0 \cdot 24843$	24.37	$0 \cdot 512$	4.771	0.562	$89 \cdot 2$	
8	$0 \cdot 25602$	$75 \cdot 46$	1.256	17.971	3-882	$78 \cdot 5$	
9	$0 \cdot 26542$	66.34	0.952	$15 \cdot 846$	$3 \cdot 495$	82.9	$92 \cdot 0$
Temp. 20°							
1	$0 \cdot 27210$	16.73	$0 \cdot 602$	$3 \cdot 184$	$0 \cdot 435$	149	
2	$0 \cdot 26082$	22.94	$0 \cdot 947$	$4 \cdot 426$	0.796	169	
3	$0 \cdot 25771$	$23 \cdot 23$	0.987	$4 \cdot 401$	0.747	163	
4	$0 \cdot 26813$	22.20	$0 \cdot 847$	$4 \cdot 430$	0.903	(183)	160
Temp. 25°							
1	$0 \cdot 27704$	16.46	$0 \cdot 656$	$3 \cdot 143$	$0 \cdot 475$	171	
2	$0 \cdot 26566$	$22 \cdot 66$	1.032	$4 \cdot 399$	$0 \cdot 824$	182	
3	$0 \cdot 26249$	22.97	1.078	$4 \cdot 387$	0.761	188	
4	$0 \cdot 27313$	22.00	0.928	$4 \cdot 223$	0.911	190	
5	$0 \cdot 30709$	$101 \cdot 70$	1.889	$25 \cdot 337$	$13 \cdot 160$	177	
6	$0 \cdot 30838$	50.78	1-131	$12 \cdot 279$	4.448	166	179
Temp. 30°							
5	$0 \cdot 31265$	94.95	1.981	23.618	14.879	227	
6	$0 \cdot 31406$	$47 \cdot 25$	$1 \cdot 197$	11.451	$5 \cdot 276$	224	
7	$0 \cdot 31763$	88.46	1.728	21.916	$12 \cdot 870$	216	222
Temp. 35°							
1	$0 \cdot 28706$	15.68	$0 \cdot 789$	$3 \cdot 027$	0.592	247	
2	$0 \cdot 27547$	21.71	1.234	$4 \cdot 265$	0.957	243	
3	$0 \cdot 27218$	22.05	1.284	$4 \cdot 252$	0.896	235	
4	$0 \cdot 28338$	21.27	$1 \cdot 130$	$4 \cdot 358$	0.975	(225)	
5	$0 \cdot 31951$	$92 \cdot 80$	$2 \cdot 128$	23-142	15.355	247	
6	$0 \cdot 32030$	$45 \cdot 54$	1.298	11.084	$5 \cdot 643$	257	
7	$0 \cdot 32410$	83.75	$1 \cdot 838$	$20 \cdot 809$	13.977	258	248
Temp. 40°							
5	0.32622	90.90	$2 \cdot 251$	$22 \cdot 862$	15.635	(260)	
6	$0 \cdot 32657$	$43 \cdot 75$	1.394	10.944	$5 \cdot 783$	272	
7	$0 \cdot 33055$	80.22	1.933	$20 \cdot 130$	$14 \cdot 656$	290	281
Temp. 45°							
1	0.29734	15.22	0.942	2.986	$0 \cdot 633$	294	
2	$0 \cdot 28548$	$20 \cdot 90$	1.452	$4 \cdot 190$	1.032	295	
3	$0 \cdot 28208$	21.51	1.509	$4 \cdot 194$	0.954	276	
4	$0 \cdot 29379$	20.61	$1 \cdot 336$	$4 \cdot 284$	1.049	(265)	
5	$0 \cdot 33316$	87.41	$2 \cdot 384$	21.944	16.550	303	
6	$0 \cdot 33288$	$42 \cdot 12$	1.385	$10 \cdot 393$	6.334	332	
7	$0 \cdot 33683$	73.96	2.020	18.505	16.281	374	312
Zinc sulphate							
No.	$10^{3} m_{1}$	$10^{3} m_{2}$	No.	$10^{3} m_{1} \quad 10^{3} m_{2}$	No.	$10^{3} m_{1}$	$10^{3} m_{2}$
1	$7 \cdot 527$	$3 \cdot 571$	3	7.664 4.200	5	6.373	4.554
2	6.406	$4 \cdot 554$	4	5.328 $\quad 3.934$	6	5.294	$4 \cdot 825$

No.	$\left(E-E^{\circ}\right)$	$10^{3} I$	Table 1. (Continued.)			K	K (mean)
			$10^{3} \mathrm{~m}_{\text {HSO }}$ -	$10^{3} m_{\mathrm{m}^{8}+}$	$10^{3} m_{\text {MSO4 }}$		
			Temp. 0°				
1	$0 \cdot 23783$	19.47	0.438	$3 \cdot 205$	$0 \cdot 366$	120	
2	$0 \cdot 24600$	21.38	$0 \cdot 458$	$3 \cdot 971$	$0 \cdot 583$	127	
3	$0 \cdot 23745$	21.58	$0 \cdot 506$	$3 \cdot 736$	$0 \cdot 464$	117	
4	0.25419	18.63	$0 \cdot 354$	$3 \cdot 500$	$0 \cdot 434$	113	
5	$0 \cdot 26425$	21.39	$0 \cdot 457$	3.981	0.573	124	
6	$0 \cdot 25509$	21.20	$0 \cdot 405$	4-177	$0 \cdot 648$	124	191
Temp. 15°							
3	0.25130	20.53	0.724	$3 \cdot 587$	$0 \cdot 613$	189	
4	$0 \cdot 26896$	$17 \cdot 61$	0.512	$3 \cdot 328$	$0 \cdot 606$	184	
5	0.26068	$20 \cdot 35$	$0 \cdot 661$	$3 \cdot 828$	0.726	182	
6	$0 \cdot 27008$	$20 \cdot 14$	$0 \cdot 588$	$4 \cdot 002$	$0 \cdot 823$	183	185
Temp. 20°							
3	$0 \cdot 25605$	20.04	0.833	$3 \cdot 513$	$0 \cdot 687$	223	
4	$0 \cdot 27409$	17.28	0.598	$3 \cdot 283$	$0 \cdot 651$	211	
5	$0 \cdot 26114$	19.89	0.765	$3 \cdot 760$	0.794	215	
6	$0 \cdot 27531$	$19 \cdot 78$	$0 \cdot 688$	$3 \cdot 962$	$0 \cdot 863$	234	220
Temp. 25°							
1	$0 \cdot 26086$	17.96	0.792	3.006	0.565	249	
2	$0 \cdot 27032$	19.74	$0 \cdot 842$	$3 \cdot 754$	$0 \cdot 800$	225	
3	$0 \cdot 26074$	19.83	0.907	3.495	0.706	240	
4	$0 \cdot 27906$	16.95	$0 \cdot 650$	$3 \cdot 232$	$0 \cdot 702$	241	
5	$0 \cdot 27053$	19.57	0.831	3.711	0.843	240	
6	$0 \cdot 28027$	19.14	$0 \cdot 740$	$3 \cdot 843$	0.982	248	240
Temp. 35°							
1	$0 \cdot 27049$	17.53	0.964	$2 \cdot 984$	0.587	288	
2	$0 \cdot 28028$	19.08	1.019	$3 \cdot 674$	0.880	278	
3	$0 \cdot 27020$	19.09	1.084	$3 \cdot 396$	$0 \cdot 804$	314	
4	0.28930	16.46	0.796	3.178	0.756	288	
5	$0 \cdot 28043$	18.77	1.003	$3 \cdot 611$	0.943	307	
6	$0 \cdot 29068$	18.54	0.904	3.773	1.052	298	295
Temp. 45°							
1	$0 \cdot 27995$	16.89	$1 \cdot 118$	$2 \cdot 892$	0.679	(394)	
2	$0 \cdot 29047$	18.63	$1 \cdot 214$	$\mathbf{3} 648$	0.906	319	
3	$0 \cdot 27991$	18.65	$1 \cdot 283$	$3 \cdot 378$	$0 \cdot 822$	362	
4	$0 \cdot 29967$	15.92	$0 \cdot 948$	3.120	$0 \cdot 814$	349	
5	$0 \cdot 29062$	$18 \cdot 32$	1.197	3.593	0.961	345	
6	$0 \cdot 30141$	$18 \cdot 17$	1.092	3.780	1.045	317	338

Table 2. Thermodynamic properties.

Reaction	$\underset{\text { (kcal. mole }{ }^{-1} \text {) }}{\Delta H}$	$\underset{\text { (kcal. mole }}{\Delta G_{298}}$	$\underset{\text { (calc. } \operatorname{deg} .^{-1} \text { mole }^{-1} \text {) }}{\Delta S}$
Mg^{2+}, $\mathrm{SO}_{4}{ }^{2-}$	4.84	-3.07	26.2
$\mathrm{Zn}^{2+}, \mathrm{SO}_{4}{ }^{2-}$	4.01	-3.25	$24 \cdot 4$

however, the use of $C=0.2$ yields K values which show no such tendency to drift with ionic strength.

The entropy of association can be written

$$
\begin{equation*}
\Delta S=\Delta S_{\mathrm{g}}+\Delta S_{\mathrm{hyd}}\left(\mathrm{MSO}_{4}\right)-\Delta S_{\mathrm{hyd}}\left(\mathrm{M}^{2+}\right)-\Delta S_{\mathrm{hyd}}\left(\mathrm{SO}_{4}{ }^{2-}\right) . \tag{2}
\end{equation*}
$$

where ΔS_{g} and ΔS_{hyd} represent gaseous and hydration entropies respectively. $\Delta S_{\mathrm{hyd}}\left(\mathrm{M}^{2+}\right)$ and $\Delta S_{\mathrm{hyd}}\left(\mathrm{SO}_{4}{ }^{2-}\right)$ were obtained from the known gaseous and standard entropies, ${ }^{14}$ and

$$
\Delta S_{\mathrm{g}}=S_{\text {trans }}\left(\mathrm{MSO}_{4}\right)-S_{\text {trans }}\left(\mathrm{M}^{2+}\right)-S_{\text {trans }}\left(\mathrm{SO}_{4}{ }^{2-}\right)-S_{\mathrm{rot}}\left(\mathrm{SO}_{4}{ }^{2-}\right)+S_{\text {rot }}\left(\mathrm{MSO}_{4}\right)
$$

$S_{\text {trans }}\left(\mathrm{MSO}_{4}\right)$ and $S_{\text {rot }}\left(\mathrm{MSO}_{4}\right)$ were calculated by the methods described elsewhere ${ }^{1}$ with the bond lengths and atomic radii given by Pauling. ${ }^{15}$ Values of $\Delta S_{\mathrm{hyd}}\left(\mathrm{MSO}_{4}\right)$ were

[^1]obtained by substitution of the calculated entropies in eqn. (2) and the data are summarised in Table 3 which also includes some values for ion pairs formed between univalent ions. The considerably higher $-\Delta S_{\mathrm{hyd}}(\mathrm{MX})$ values for the bivalent sulphates possibly

Plots of $\log K$ against T^{-1} for (1) magnesium sulphate and (2) zinc sulphate.

Table 3. Thermodynamic properties.

Ion pair	$\begin{gathered} S_{\mathrm{g}}(\mathrm{MX}) \\ \text { (cal. } \operatorname{deg} \cdot^{-1} \mathrm{~mole}^{-1} \text {) } \end{gathered}$	$\begin{gathered} \Delta S \\ \text { (cal. deg. } .^{-1} \text { mole }^{-1} \text {) } \end{gathered}$	$\begin{aligned} & S^{\circ}(\mathrm{MX}) \\ & \text { (cal. deg. } .^{-1} \text { mole }^{-1} \text {) } \end{aligned}$	$\left.\underset{\text { (cal. deg. } .^{-1}}{-\Delta S_{\mathrm{hyd}}(\mathrm{MX})} \mathrm{mole}^{-1}\right)$
$\mathrm{MgSO}_{4} \ldots$	68.8	26.2	$3 \cdot 1$	$65 \cdot 7$
ZnSO_{4}	$70 \cdot 9$	$24 \cdot 4$	$2 \cdot 8$	68.1
TlCl ...	$60 \cdot 9$	-1.7	41.9	$19 \cdot 0$
TlBr	$62 \cdot 8$	-4.2	$45 \cdot 5$	$17 \cdot 3$

reflect a smaller degree of charge neutralisation accompanying their formation than in the case of the thallous ion pairs which are usually considered to be more covalent.

The University, Glasgow, W.2.
[Received, June 10th, 1958.]

[^0]: ${ }^{4}$ Vogel, " A Text Book of Quantitative Analysis," Longmans, London, 1947.
 ${ }^{5}$ Davies, J., 1938, 2093.
 ${ }^{6}$ Dunsmore and James, $J ., 1951,2925$.
 ${ }^{7}$ Robinson and Stokes, "Electrolyte Solutions," Butterworths, London, 1955.
 ${ }^{8}$ Davies, Trans. Faraday Soc., 1927, 23, 351.
 ${ }^{9}$ Owen and Gurry, J. Amer. Chem. Soc., 1938, 60, 3074.
 10 Brown and Prue, Proc. Roy. Soc., 1955, A, 232, 320.
 ${ }^{11}$ Guggenheim, Discuss. Faraday Soc., 1957, No. 24, 53.
 12 Davies, Otter, and Prue, ibid., p. 103.
 ${ }^{18}$ Beevers and Lipson, Proc. Roy. Soc., 1934, A, 146, 570.

[^1]: 14 Latimer, " Oxidation Potentials," Prentice-Hall, New York, 1952.
 15 Pauling, " Nature of the Chemical Bond," Cornell Univ. Press, Ithaca, 1939.

